Lakshmi - Manoj generalized Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar
نویسندگان
چکیده
In the present era, fractional calculus plays an important role in various fields. Fractional Calculus is a field of mathematic study that grows out of the traditional definitions of the calculus integral and derivative operators in much the same way fractional exponents is an outgrowth of exponents with integer value. Based on the wide applications in engineering and sciences such as physics, mechanics, chemistry, and biology, research on fractional ordinary or partial differential equations and other relative topics is active and extensive around the world. In the past few years, the increase of the subject is witnessed by hundreds of research papers, several monographs, and many international conferences.The purpose of present paper to solve 1-D fractal heat-conduction problem in a fractal semi-infinite bar has been developed by local fractional calculus employing the analytical Manoj Generalized Yang-Fourier transforms method.
منابع مشابه
Investigation of the Effects of Non-Linear and Non-Homogeneous Non-Fourier Heat Conduction Equations on Temperature Distribution in a Semi-Infinite Body
In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-correct...
متن کاملModeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model
Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...
متن کاملThermoelastic Response of a Rotating Hollow Cylinder Based on Generalized Model with Higher Order Derivatives and Phase-Lags
Generalized thermoelastic models have been developed with the aim of eliminating the contradiction in the infinite velocity of heat propagation inherent in the classical dynamical coupled thermoelasticity theory. In these generalized models, the basic equations include thermal relaxation times and they are of hyperbolic type. Furthermore, Tzou established the dual-phase-lag heat conduction theo...
متن کاملThermo-Viscoelastic Interaction Subjected to Fractional Fourier law with Three-Phase-Lag Effects
In this paper, a new mathematical model of a Kelvin-Voigt type thermo-visco-elastic, infinite thermally conducting medium has been considered in the context of a new consideration of heat conduction having a non-local fractional order due to the presence of periodically varying heat sources. Three-phase-lag thermoelastic model, Green Naghdi models II and III (i.e., the models which predicts the...
متن کاملGeneralized Thermoelastic Problem of a Thick Circular Plate with Axisymmetric Heat Supply Due to Internal Heat Generation
A two dimensional generalized thermoelastic problem of a thick circular plate of finite thickness and infinite extent subjected to continuous axisymmetric heat supply and an internal heat generation is studied within the context of generalized thermoelasticity. Unified system of equations for classical coupled thermoelasticity, Lord-Shulman and Green-Lindsay theory is considered. An exact solut...
متن کامل